skip to main content


Search for: All records

Creators/Authors contains: "Sheng, Xing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Flexible biocompatible electronic systems that leverage key materials and manufacturing techniques associated with the consumer electronics industry have potential for broad applications in biomedicine and biological research. This study reports scalable approaches to technologies of this type, where thin microscale device components integrate onto flexible polymer substrates in interconnected arrays to provide multimodal, high performance operational capabilities as intimately coupled biointerfaces. Specificially, the material options and engineering schemes summarized here serve as foundations for diverse, heterogeneously integrated systems. Scaled examples incorporate >32,000 silicon microdie and inorganic microscale light-emitting diodes derived from wafer sources distributed at variable pitch spacings and fill factors across large areas on polymer films, at full organ-scale dimensions such as human brain, over ∼150 cm 2 . In vitro studies and accelerated testing in simulated biofluids, together with theoretical simulations of underlying processes, yield quantitative insights into the key materials aspects. The results suggest an ability of these systems to operate in a biologically safe, stable fashion with projected lifetimes of several decades without leakage currents or reductions in performance. The versatility of these combined concepts suggests applicability to many classes of biointegrated semiconductor devices. 
    more » « less
  3. Abstract

    Bioresorbable electronic materials serve as foundations for implantable devices that provide active diagnostic or therapeutic function over a timeframe matched to a biological process, and then disappear within the body to avoid secondary surgical extraction. Approaches to power supply in these physically transient systems are critically important. This paper describes a fully biodegradable, monocrystalline silicon photovoltaic (PV) platform based on microscale cells (microcells) designed to operate at wavelengths with long penetration depths in biological tissues (red and near infrared wavelengths), such that external illumination can provide realistic levels of power. Systematic characterization and theoretical simulations of operation under porcine skin and fat establish a foundational understanding of these systems and their scalability. In vivo studies of a representative platform capable of generating ≈60 µW of electrical power under 4 mm of porcine skin and fat illustrate an ability to operate blue light‐emitting diodes (LEDs) as subdermal implants in rats for 3 d. Here, the PV system fully resorbs after 4 months. Histological analysis reveals that the degradation process introduces no inflammatory responses in the surrounding tissues. The results suggest the potential for using silicon photovoltaic microcells as bioresorbable power supplies for various transient biomedical implants.

     
    more » « less